3.37 \(\int \frac{d+e x+f x^2}{(a+b x^2+c x^4)^2} \, dx\)

Optimal. Leaf size=368 \[ \frac{x \left (c x^2 (b d-2 a f)-a b f-2 a c d+b^2 d\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{\sqrt{c} \left (\frac{4 a b f-12 a c d+b^2 d}{\sqrt{b^2-4 a c}}-2 a f+b d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (-\frac{4 a b f-12 a c d+b^2 d}{\sqrt{b^2-4 a c}}-2 a f+b d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} a \left (b^2-4 a c\right ) \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{2 c e \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \]

[Out]

-(e*(b + 2*c*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (x*(b^2*d - 2*a*c*d - a*b*f + c*(b*d - 2*a*f)*x^2))
/(2*a*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[c]*(b*d - 2*a*f + (b^2*d - 12*a*c*d + 4*a*b*f)/Sqrt[b^2 - 4*a
*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)*Sqrt[b - Sqrt[b^2 - 4
*a*c]]) + (Sqrt[c]*(b*d - 2*a*f - (b^2*d - 12*a*c*d + 4*a*b*f)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/S
qrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + (2*c*e*ArcTanh[(b + 2*c
*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.870422, antiderivative size = 368, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 9, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.36, Rules used = {1673, 1178, 1166, 205, 12, 1107, 614, 618, 206} \[ \frac{x \left (c x^2 (b d-2 a f)-a b f-2 a c d+b^2 d\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{\sqrt{c} \left (\frac{4 a b f-12 a c d+b^2 d}{\sqrt{b^2-4 a c}}-2 a f+b d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (-\frac{4 a b f-12 a c d+b^2 d}{\sqrt{b^2-4 a c}}-2 a f+b d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} a \left (b^2-4 a c\right ) \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{2 c e \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*x^2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

-(e*(b + 2*c*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (x*(b^2*d - 2*a*c*d - a*b*f + c*(b*d - 2*a*f)*x^2))
/(2*a*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[c]*(b*d - 2*a*f + (b^2*d - 12*a*c*d + 4*a*b*f)/Sqrt[b^2 - 4*a
*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)*Sqrt[b - Sqrt[b^2 - 4
*a*c]]) + (Sqrt[c]*(b*d - 2*a*f - (b^2*d - 12*a*c*d + 4*a*b*f)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/S
qrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + (2*c*e*ArcTanh[(b + 2*c
*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/2)

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 614

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^(p + 1))/((p +
1)*(b^2 - 4*a*c)), x] - Dist[(2*c*(2*p + 3))/((p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{d+e x+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx &=\int \frac{e x}{\left (a+b x^2+c x^4\right )^2} \, dx+\int \frac{d+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx\\ &=\frac{x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\int \frac{-b^2 d+6 a c d-a b f-c (b d-2 a f) x^2}{a+b x^2+c x^4} \, dx}{2 a \left (b^2-4 a c\right )}+e \int \frac{x}{\left (a+b x^2+c x^4\right )^2} \, dx\\ &=\frac{x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{1}{2} e \operatorname{Subst}\left (\int \frac{1}{\left (a+b x+c x^2\right )^2} \, dx,x,x^2\right )+\frac{\left (c \left (b d-2 a f-\frac{b^2 d-12 a c d+4 a b f}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{4 a \left (b^2-4 a c\right )}+\frac{\left (c \left (b d-2 a f+\frac{b^2 d-12 a c d+4 a b f}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{4 a \left (b^2-4 a c\right )}\\ &=-\frac{e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{\sqrt{c} \left (b d-2 a f+\frac{b^2 d-12 a c d+4 a b f}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b d-2 a f-\frac{b^2 d-12 a c d+4 a b f}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \left (b^2-4 a c\right ) \sqrt{b+\sqrt{b^2-4 a c}}}-\frac{(c e) \operatorname{Subst}\left (\int \frac{1}{a+b x+c x^2} \, dx,x,x^2\right )}{b^2-4 a c}\\ &=-\frac{e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{\sqrt{c} \left (b d-2 a f+\frac{b^2 d-12 a c d+4 a b f}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b d-2 a f-\frac{b^2 d-12 a c d+4 a b f}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \left (b^2-4 a c\right ) \sqrt{b+\sqrt{b^2-4 a c}}}+\frac{(2 c e) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{b^2-4 a c}\\ &=-\frac{e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{\sqrt{c} \left (b d-2 a f+\frac{b^2 d-12 a c d+4 a b f}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b d-2 a f-\frac{b^2 d-12 a c d+4 a b f}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \left (b^2-4 a c\right ) \sqrt{b+\sqrt{b^2-4 a c}}}+\frac{2 c e \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 1.35201, size = 398, normalized size = 1.08 \[ \frac{1}{4} \left (\frac{2 a b (e+f x)+4 a c x (d+x (e+f x))-2 b d x \left (b+c x^2\right )}{a \left (4 a c-b^2\right ) \left (a+b x^2+c x^4\right )}+\frac{\sqrt{2} \sqrt{c} \left (b \left (d \sqrt{b^2-4 a c}+4 a f\right )-2 a \left (f \sqrt{b^2-4 a c}+6 c d\right )+b^2 d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{2} \sqrt{c} \left (b d \sqrt{b^2-4 a c}-2 a f \sqrt{b^2-4 a c}-4 a b f+12 a c d+b^2 (-d)\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{4 c e \log \left (\sqrt{b^2-4 a c}-b-2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac{4 c e \log \left (\sqrt{b^2-4 a c}+b+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*x^2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

((2*a*b*(e + f*x) - 2*b*d*x*(b + c*x^2) + 4*a*c*x*(d + x*(e + f*x)))/(a*(-b^2 + 4*a*c)*(a + b*x^2 + c*x^4)) +
(Sqrt[2]*Sqrt[c]*(b^2*d + b*(Sqrt[b^2 - 4*a*c]*d + 4*a*f) - 2*a*(6*c*d + Sqrt[b^2 - 4*a*c]*f))*ArcTan[(Sqrt[2]
*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*Sqrt[
c]*(-(b^2*d) + 12*a*c*d + b*Sqrt[b^2 - 4*a*c]*d - 4*a*b*f - 2*a*Sqrt[b^2 - 4*a*c]*f)*ArcTan[(Sqrt[2]*Sqrt[c]*x
)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (4*c*e*Log[-b + Sqrt[b^2
 - 4*a*c] - 2*c*x^2])/(b^2 - 4*a*c)^(3/2) + (4*c*e*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/(b^2 - 4*a*c)^(3/2))/
4

________________________________________________________________________________________

Maple [B]  time = 0.118, size = 1813, normalized size = 4.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x)

[Out]

2*c/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)*a*x*f+2*c/(4*a*c-b^2)^2/(x^2+1/2*(-4*a*c+b^2)^(1/2)/c
+1/2*b/c)*a*x*f+1/4*c/(4*a*c-b^2)^2/a*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+
b^2)^(1/2))*c)^(1/2))*b^3*d-1/4*c/(4*a*c-b^2)^2/a*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)
/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^3*d-c/(4*a*c-b^2)^2*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*
2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*(-4*a*c+b^2)^(1/2)*b*f-c/(4*a*c-b^2)^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2
))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*(-4*a*c+b^2)^(1/2)*b*f-1/4*c/(4*a*c-b^2)^2/a*
2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*(-4*a*c+b^2)^(1/
2)*b^2*d-1/4*c/(4*a*c-b^2)^2/a*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/
2)-b)*c)^(1/2))*(-4*a*c+b^2)^(1/2)*b^2*d+c/(4*a*c-b^2)^2/(x^2+1/2*(-4*a*c+b^2)^(1/2)/c+1/2*b/c)*d*x*(-4*a*c+b^
2)^(1/2)-c/(4*a*c-b^2)^2/(x^2+1/2*(-4*a*c+b^2)^(1/2)/c+1/2*b/c)*d*x*b+1/4/(4*a*c-b^2)^2/(x^2+1/2*(-4*a*c+b^2)^
(1/2)/c+1/2*b/c)/a*d*x*b^3-c/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)*d*x*(-4*a*c+b^2)^(1/2)-c/(4*
a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)*d*x*b+1/4/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/
c)/a*d*x*b^3-1/4/(4*a*c-b^2)^2/(x^2+1/2*(-4*a*c+b^2)^(1/2)/c+1/2*b/c)/a*d*x*(-4*a*c+b^2)^(1/2)*b^2+3*c^2/(4*a*
c-b^2)^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*(-4*a*c
+b^2)^(1/2)*d-c^2/(4*a*c-b^2)^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(
1/2))*c)^(1/2))*b*d+1/4/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)/a*d*x*(-4*a*c+b^2)^(1/2)*b^2+3*c^
2/(4*a*c-b^2)^2*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))
*(-4*a*c+b^2)^(1/2)*d+c^2/(4*a*c-b^2)^2*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c
+b^2)^(1/2)-b)*c)^(1/2))*b*d+2*c^2/(4*a*c-b^2)^2*a*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)
/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*f-1/2*c/(4*a*c-b^2)^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2
^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*f-2*c^2/(4*a*c-b^2)^2*a*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*
arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*f+1/2*c/(4*a*c-b^2)^2*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)
^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^2*f+c/(4*a*c-b^2)^2*(-4*a*c+b^2)^(1/2)*e*ln(2*c
*x^2+(-4*a*c+b^2)^(1/2)+b)+2*c/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)*e*a-c/(4*a*c-b^2)^2*(-4*a*
c+b^2)^(1/2)*e*ln(-2*c*x^2+(-4*a*c+b^2)^(1/2)-b)+2*c/(4*a*c-b^2)^2/(x^2+1/2*(-4*a*c+b^2)^(1/2)/c+1/2*b/c)*e*a-
1/2/(4*a*c-b^2)^2/(x^2+1/2*(-4*a*c+b^2)^(1/2)/c+1/2*b/c)*e*b^2-1/2/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)
^(1/2)/c)*e*b^2-1/2/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)*x*b^2*f-1/2/(4*a*c-b^2)^2/(x^2+1/2*(-
4*a*c+b^2)^(1/2)/c+1/2*b/c)*x*b^2*f

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**2+e*x+d)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError